I commented again (29) at Cosmic Variance on a post about "Physicalist Anti-Reductionism" which included a debate between John Dupré and Alex Rosenberg. Sean seems to minimize the importance of the topic, finding it "the most boring argument in all of philosophy of science."
To me, it gets back to this kind of split I experienced when reading Nancy Cartwright. I found it hard to do physics when I didn't have this grand picture of it in mind, and instead having a skeptical approach. Can one be critical of something and excited about it at the same time?
But actually, to me, reading more skeptical philosophy of science is kind of like finding an honest way back to appreciating some of the stuff that originally excited me.
Maybe I'm just trying to justify choosing a not so "hot" topic in physics. Condensed matter theory, or particle theory or cosmology might have been sexier in some ways. Maybe I chose a purposefully boring topic because I thought it would be more honest.
Anyway, I was just realizing that this sense that a kind of reductionism is wrong has made me just not think very much about the components of things. Yes, there's a real sense in which we're made of molecules. And they are pretty cool. And there's a lot of them. And people make pretty pictures of them. And understanding a mechanism is pretty exciting.
The basic problem I have with accelerator physics is that try as I may, I can't put it in the same bag of exciting stuff as I've seen a lot of other topics before. Thinking about protein structure, or photosynthesis, or quantum mechanics is fun for me. But thinking about dispersion functions and chromaticity and tune shift with amplitude and momentum compaction factors... is just hard to get excited about. There were topics that originally seemed exciting. There's basically a new approach to classical mechanics that is developed in the early accelerator theory- a Lie algebra approach. Then there's the stuff with power series, whose early advocate describes in terms of differential algebras with connection to non-standard analysis. But in some sense, these mathematical abstractions are a bit overblown (particularly the latter). The reason I say they are overblown is that the problem has not even been solved. The real non-linear dynamics problem is that of the dynamic aperture (the stable region of a non-linear map) and as far as I know, this isn't really a solved problem. So going out so far into a given formalism when that formalism doesn't even solve the main problem seems a little too much.
Anyway, I'm not giving up. I like the classical mechanics. Synchrotron radiation is something I can put in the bag of exciting stuff. And the awful messy code situation may be able to slowly improve. So that's sort of the package. We've got some kind of nice classical mechanics. A bunch of somewhat useful definitions of things that are measured. A bit of a computer code and sociological infrastructure difficulty, and then some cool stuff with synchrotron radiation. Its a topic. It may be more fun to think about ecology or species of mosses, or the definition and validity of reductionism. But at least the topic is becoming less awful. Less ugly. Back away from all the extremists with their unfinished pyramids to build, and one has a topic in need of some sprucing up and simplification, but honorable nonetheless.
No comments:
Post a Comment